Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

i+\frac{\frac{1}{5}}{\sqrt{15+\left(-\sqrt{10}\right)^{2}}}-|-4|
The square of \sqrt{15} is 15.
i+\frac{\frac{1}{5}}{\sqrt{15+\left(\sqrt{10}\right)^{2}}}-|-4|
Calculate -\sqrt{10} to the power of 2 and get \left(\sqrt{10}\right)^{2}.
i+\frac{\frac{1}{5}}{\sqrt{15+10}}-|-4|
The square of \sqrt{10} is 10.
i+\frac{\frac{1}{5}}{\sqrt{25}}-|-4|
Add 15 and 10 to get 25.
i+\frac{\frac{1}{5}}{5}-|-4|
Calculate the square root of 25 and get 5.
i+\frac{1}{5\times 5}-|-4|
Express \frac{\frac{1}{5}}{5} as a single fraction.
i+\frac{1}{25}-|-4|
Multiply 5 and 5 to get 25.
i+\frac{1}{25}-4
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of -4 is 4.
-\frac{99}{25}+i
Do the additions.
Re(i+\frac{\frac{1}{5}}{\sqrt{15+\left(-\sqrt{10}\right)^{2}}}-|-4|)
The square of \sqrt{15} is 15.
Re(i+\frac{\frac{1}{5}}{\sqrt{15+\left(\sqrt{10}\right)^{2}}}-|-4|)
Calculate -\sqrt{10} to the power of 2 and get \left(\sqrt{10}\right)^{2}.
Re(i+\frac{\frac{1}{5}}{\sqrt{15+10}}-|-4|)
The square of \sqrt{10} is 10.
Re(i+\frac{\frac{1}{5}}{\sqrt{25}}-|-4|)
Add 15 and 10 to get 25.
Re(i+\frac{\frac{1}{5}}{5}-|-4|)
Calculate the square root of 25 and get 5.
Re(i+\frac{1}{5\times 5}-|-4|)
Express \frac{\frac{1}{5}}{5} as a single fraction.
Re(i+\frac{1}{25}-|-4|)
Multiply 5 and 5 to get 25.
Re(i+\frac{1}{25}-4)
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of -4 is 4.
Re(-\frac{99}{25}+i)
Do the additions in i+\frac{1}{25}-4.
-\frac{99}{25}
The real part of -\frac{99}{25}+i is -\frac{99}{25}.