h - 0,5 + \frac { 1 } { 6 }
Evaluate
h = -\frac{1}{3} = -0.3333333333333333
Factor
\frac{3h-1}{3}
Share
Copied to clipboard
h-\frac{1}{2}+\frac{1}{6}
Convert decimal number -0,5 to fraction -\frac{5}{10}. Reduce the fraction -\frac{5}{10} to lowest terms by extracting and canceling out 5.
h-\frac{3}{6}+\frac{1}{6}
Least common multiple of 2 and 6 is 6. Convert -\frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
h+\frac{-3+1}{6}
Since -\frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
h+\frac{-2}{6}
Add -3 and 1 to get -2.
h-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
factor(h-\frac{1}{2}+\frac{1}{6})
Convert decimal number -0,5 to fraction -\frac{5}{10}. Reduce the fraction -\frac{5}{10} to lowest terms by extracting and canceling out 5.
factor(h-\frac{3}{6}+\frac{1}{6})
Least common multiple of 2 and 6 is 6. Convert -\frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
factor(h+\frac{-3+1}{6})
Since -\frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
factor(h+\frac{-2}{6})
Add -3 and 1 to get -2.
factor(h-\frac{1}{3})
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{3h-1}{3}
Factor out \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}