Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

t\left(-t+6\right)
Factor out t.
-t^{2}+6t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-6±\sqrt{6^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6±6}{2\left(-1\right)}
Take the square root of 6^{2}.
t=\frac{-6±6}{-2}
Multiply 2 times -1.
t=\frac{0}{-2}
Now solve the equation t=\frac{-6±6}{-2} when ± is plus. Add -6 to 6.
t=0
Divide 0 by -2.
t=-\frac{12}{-2}
Now solve the equation t=\frac{-6±6}{-2} when ± is minus. Subtract 6 from -6.
t=6
Divide -12 by -2.
-t^{2}+6t=-t\left(t-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 6 for x_{2}.