Factor
\left(3-t\right)\left(5t+1\right)
Evaluate
\left(3-t\right)\left(5t+1\right)
Share
Copied to clipboard
a+b=14 ab=-5\times 3=-15
Factor the expression by grouping. First, the expression needs to be rewritten as -5t^{2}+at+bt+3. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=15 b=-1
The solution is the pair that gives sum 14.
\left(-5t^{2}+15t\right)+\left(-t+3\right)
Rewrite -5t^{2}+14t+3 as \left(-5t^{2}+15t\right)+\left(-t+3\right).
5t\left(-t+3\right)-t+3
Factor out 5t in -5t^{2}+15t.
\left(-t+3\right)\left(5t+1\right)
Factor out common term -t+3 by using distributive property.
-5t^{2}+14t+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-14±\sqrt{14^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-14±\sqrt{196-4\left(-5\right)\times 3}}{2\left(-5\right)}
Square 14.
t=\frac{-14±\sqrt{196+20\times 3}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-14±\sqrt{196+60}}{2\left(-5\right)}
Multiply 20 times 3.
t=\frac{-14±\sqrt{256}}{2\left(-5\right)}
Add 196 to 60.
t=\frac{-14±16}{2\left(-5\right)}
Take the square root of 256.
t=\frac{-14±16}{-10}
Multiply 2 times -5.
t=\frac{2}{-10}
Now solve the equation t=\frac{-14±16}{-10} when ± is plus. Add -14 to 16.
t=-\frac{1}{5}
Reduce the fraction \frac{2}{-10} to lowest terms by extracting and canceling out 2.
t=-\frac{30}{-10}
Now solve the equation t=\frac{-14±16}{-10} when ± is minus. Subtract 16 from -14.
t=3
Divide -30 by -10.
-5t^{2}+14t+3=-5\left(t-\left(-\frac{1}{5}\right)\right)\left(t-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{5} for x_{1} and 3 for x_{2}.
-5t^{2}+14t+3=-5\left(t+\frac{1}{5}\right)\left(t-3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-5t^{2}+14t+3=-5\times \frac{-5t-1}{-5}\left(t-3\right)
Add \frac{1}{5} to t by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-5t^{2}+14t+3=\left(-5t-1\right)\left(t-3\right)
Cancel out 5, the greatest common factor in -5 and 5.
x ^ 2 -\frac{14}{5}x -\frac{3}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{14}{5} rs = -\frac{3}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{5} - u s = \frac{7}{5} + u
Two numbers r and s sum up to \frac{14}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{14}{5} = \frac{7}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{5} - u) (\frac{7}{5} + u) = -\frac{3}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{5}
\frac{49}{25} - u^2 = -\frac{3}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{5}-\frac{49}{25} = -\frac{64}{25}
Simplify the expression by subtracting \frac{49}{25} on both sides
u^2 = \frac{64}{25} u = \pm\sqrt{\frac{64}{25}} = \pm \frac{8}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{5} - \frac{8}{5} = -0.200 s = \frac{7}{5} + \frac{8}{5} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}