Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16h^{4}k^{4}-1}{16}
Factor out \frac{1}{16}.
\left(4h^{2}k^{2}-1\right)\left(4h^{2}k^{2}+1\right)
Consider 16h^{4}k^{4}-1. Rewrite 16h^{4}k^{4}-1 as \left(4h^{2}k^{2}\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2hk-1\right)\left(2hk+1\right)
Consider 4h^{2}k^{2}-1. Rewrite 4h^{2}k^{2}-1 as \left(2hk\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(2hk-1\right)\left(2hk+1\right)\left(4h^{2}k^{2}+1\right)}{16}
Rewrite the complete factored expression.