Solve for r
r=\frac{h\left(s+t\right)}{t}
s\neq -t\text{ and }t\neq 0
Solve for h
h=\frac{rt}{s+t}
s\neq -t\text{ and }t\neq 0
Share
Copied to clipboard
h=r\times \frac{1}{\frac{t}{t}+\frac{s}{t}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{t}{t}.
h=r\times \frac{1}{\frac{t+s}{t}}
Since \frac{t}{t} and \frac{s}{t} have the same denominator, add them by adding their numerators.
h=r\times \frac{t}{t+s}
Divide 1 by \frac{t+s}{t} by multiplying 1 by the reciprocal of \frac{t+s}{t}.
h=\frac{rt}{t+s}
Express r\times \frac{t}{t+s} as a single fraction.
\frac{rt}{t+s}=h
Swap sides so that all variable terms are on the left hand side.
rt=h\left(s+t\right)
Multiply both sides of the equation by s+t.
rt=hs+ht
Use the distributive property to multiply h by s+t.
tr=hs+ht
The equation is in standard form.
\frac{tr}{t}=\frac{h\left(s+t\right)}{t}
Divide both sides by t.
r=\frac{h\left(s+t\right)}{t}
Dividing by t undoes the multiplication by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}