Solve for x
x=\frac{h^{2}+81}{18}
h\geq 0
Solve for h (complex solution)
h=3\sqrt{2x-9}
Solve for x (complex solution)
x=\frac{h^{2}+81}{18}
arg(h)<\pi \text{ or }h=0
Solve for h
h=3\sqrt{2x-9}
x\geq \frac{9}{2}
Graph
Share
Copied to clipboard
h=\sqrt{x^{2}-\frac{324-72x+4x^{2}}{4}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(18-2x\right)^{2}.
h=\sqrt{x^{2}-\left(81-18x+x^{2}\right)}
Divide each term of 324-72x+4x^{2} by 4 to get 81-18x+x^{2}.
h=\sqrt{x^{2}-81+18x-x^{2}}
To find the opposite of 81-18x+x^{2}, find the opposite of each term.
h=\sqrt{-81+18x}
Combine x^{2} and -x^{2} to get 0.
\sqrt{-81+18x}=h
Swap sides so that all variable terms are on the left hand side.
18x-81=h^{2}
Square both sides of the equation.
18x-81-\left(-81\right)=h^{2}-\left(-81\right)
Add 81 to both sides of the equation.
18x=h^{2}-\left(-81\right)
Subtracting -81 from itself leaves 0.
18x=h^{2}+81
Subtract -81 from h^{2}.
\frac{18x}{18}=\frac{h^{2}+81}{18}
Divide both sides by 18.
x=\frac{h^{2}+81}{18}
Dividing by 18 undoes the multiplication by 18.
x=\frac{h^{2}}{18}+\frac{9}{2}
Divide h^{2}+81 by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}