Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{4x^{6}}-\frac{3x^{3}}{4x^{6}}-5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{6} and 4x^{3} is 4x^{6}. Multiply \frac{1}{x^{6}} times \frac{4}{4}. Multiply \frac{3}{4x^{3}} times \frac{x^{3}}{x^{3}}.
\frac{4-3x^{3}}{4x^{6}}-5
Since \frac{4}{4x^{6}} and \frac{3x^{3}}{4x^{6}} have the same denominator, subtract them by subtracting their numerators.
\frac{4-3x^{3}}{4x^{6}}-\frac{5\times 4x^{6}}{4x^{6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{4x^{6}}{4x^{6}}.
\frac{4-3x^{3}-5\times 4x^{6}}{4x^{6}}
Since \frac{4-3x^{3}}{4x^{6}} and \frac{5\times 4x^{6}}{4x^{6}} have the same denominator, subtract them by subtracting their numerators.
\frac{4-3x^{3}-20x^{6}}{4x^{6}}
Do the multiplications in 4-3x^{3}-5\times 4x^{6}.
\frac{-20\left(x^{3}-\left(-\frac{1}{40}\sqrt{329}-\frac{3}{40}\right)\right)\left(x^{3}-\left(\frac{1}{40}\sqrt{329}-\frac{3}{40}\right)\right)}{4x^{6}}
Factor the expressions that are not already factored in \frac{4-3x^{3}-20x^{6}}{4x^{6}}.
\frac{-5\left(x^{3}-\left(-\frac{1}{40}\sqrt{329}-\frac{3}{40}\right)\right)\left(x^{3}-\left(\frac{1}{40}\sqrt{329}-\frac{3}{40}\right)\right)}{x^{6}}
Cancel out 4 in both numerator and denominator.
\frac{-5\left(x^{3}+\frac{1}{40}\sqrt{329}+\frac{3}{40}\right)\left(x^{3}-\left(\frac{1}{40}\sqrt{329}-\frac{3}{40}\right)\right)}{x^{6}}
To find the opposite of -\frac{1}{40}\sqrt{329}-\frac{3}{40}, find the opposite of each term.
\frac{-5\left(x^{3}+\frac{1}{40}\sqrt{329}+\frac{3}{40}\right)\left(x^{3}-\frac{1}{40}\sqrt{329}+\frac{3}{40}\right)}{x^{6}}
To find the opposite of \frac{1}{40}\sqrt{329}-\frac{3}{40}, find the opposite of each term.
\frac{\left(-5x^{3}-\frac{1}{8}\sqrt{329}-\frac{3}{8}\right)\left(x^{3}-\frac{1}{40}\sqrt{329}+\frac{3}{40}\right)}{x^{6}}
Use the distributive property to multiply -5 by x^{3}+\frac{1}{40}\sqrt{329}+\frac{3}{40}.
\frac{-5x^{6}-\frac{3}{4}x^{3}+\frac{1}{320}\left(\sqrt{329}\right)^{2}-\frac{9}{320}}{x^{6}}
Use the distributive property to multiply -5x^{3}-\frac{1}{8}\sqrt{329}-\frac{3}{8} by x^{3}-\frac{1}{40}\sqrt{329}+\frac{3}{40} and combine like terms.
\frac{-5x^{6}-\frac{3}{4}x^{3}+\frac{1}{320}\times 329-\frac{9}{320}}{x^{6}}
The square of \sqrt{329} is 329.
\frac{-5x^{6}-\frac{3}{4}x^{3}+\frac{329}{320}-\frac{9}{320}}{x^{6}}
Multiply \frac{1}{320} and 329 to get \frac{329}{320}.
\frac{-5x^{6}-\frac{3}{4}x^{3}+1}{x^{6}}
Subtract \frac{9}{320} from \frac{329}{320} to get 1.