Evaluate
\frac{\sqrt{14}\left(3g-5\right)}{15}
Factor
\frac{\sqrt{14}\left(3g-5\right)}{15}
Share
Copied to clipboard
g\times \frac{7\sqrt{2}\sqrt{7}}{5\left(\sqrt{7}\right)^{2}}-\frac{2\sqrt{7}}{3\sqrt{2}}
Rationalize the denominator of \frac{7\sqrt{2}}{5\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
g\times \frac{7\sqrt{2}\sqrt{7}}{5\times 7}-\frac{2\sqrt{7}}{3\sqrt{2}}
The square of \sqrt{7} is 7.
g\times \frac{7\sqrt{14}}{5\times 7}-\frac{2\sqrt{7}}{3\sqrt{2}}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
g\times \frac{7\sqrt{14}}{35}-\frac{2\sqrt{7}}{3\sqrt{2}}
Multiply 5 and 7 to get 35.
g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}}{3\sqrt{2}}
Divide 7\sqrt{14} by 35 to get \frac{1}{5}\sqrt{14}.
g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{7}}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}\sqrt{2}}{3\times 2}
The square of \sqrt{2} is 2.
g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{14}}{3\times 2}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{14}}{6}
Multiply 3 and 2 to get 6.
g\times \frac{1}{5}\sqrt{14}-\frac{1}{3}\sqrt{14}
Divide 2\sqrt{14} by 6 to get \frac{1}{3}\sqrt{14}.
factor(g\times \frac{7\sqrt{2}\sqrt{7}}{5\left(\sqrt{7}\right)^{2}}-\frac{2\sqrt{7}}{3\sqrt{2}})
Rationalize the denominator of \frac{7\sqrt{2}}{5\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
factor(g\times \frac{7\sqrt{2}\sqrt{7}}{5\times 7}-\frac{2\sqrt{7}}{3\sqrt{2}})
The square of \sqrt{7} is 7.
factor(g\times \frac{7\sqrt{14}}{5\times 7}-\frac{2\sqrt{7}}{3\sqrt{2}})
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
factor(g\times \frac{7\sqrt{14}}{35}-\frac{2\sqrt{7}}{3\sqrt{2}})
Multiply 5 and 7 to get 35.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}}{3\sqrt{2}})
Divide 7\sqrt{14} by 35 to get \frac{1}{5}\sqrt{14}.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}\sqrt{2}}{3\left(\sqrt{2}\right)^{2}})
Rationalize the denominator of \frac{2\sqrt{7}}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{7}\sqrt{2}}{3\times 2})
The square of \sqrt{2} is 2.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{14}}{3\times 2})
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{2\sqrt{14}}{6})
Multiply 3 and 2 to get 6.
factor(g\times \frac{1}{5}\sqrt{14}-\frac{1}{3}\sqrt{14})
Divide 2\sqrt{14} by 6 to get \frac{1}{3}\sqrt{14}.
\frac{3g\sqrt{14}-5\sqrt{14}}{15}
Factor out \frac{1}{15}.
\sqrt{14}\left(3g-5\right)
Consider 3g\sqrt{14}-5\sqrt{14}. Factor out \sqrt{14}.
\frac{\sqrt{14}\left(3g-5\right)}{15}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}