Evaluate
g^{6}
Differentiate w.r.t. g
6g^{5}
Quiz
Algebra
5 problems similar to:
g ^ { - 1 } h ^ { - 1 } \cdot g ^ { - 1 } h ^ { 0 } \cdot g ^ { 8 } h
Share
Copied to clipboard
\frac{1}{g}\times \frac{1}{h}\times \frac{1}{g}h^{0}h^{1}g^{8}
Use the rules of exponents to simplify the expression.
\frac{1}{g}h^{0}\times \frac{1}{h}h^{1}\times \frac{1}{g}g^{8}
Use the Commutative Property of Multiplication.
\frac{1}{g}h^{0}h^{-1+1}g^{-1+8}
To multiply powers of the same base, add their exponents.
\frac{1}{g}h^{0}h^{0}g^{-1+8}
Add the exponents -1 and 1.
\frac{1}{g}h^{0}g^{-1+8}
For any number a except 0, a^{0}=1.
\frac{1}{g}h^{0}g^{7}
Add the exponents -1 and 8.
\frac{1}{g}g^{7}
Raise h to the power 0.
\frac{\mathrm{d}}{\mathrm{d}g}(g^{-2}h^{-1}h^{0}g^{8}h)
To multiply powers of the same base, add their exponents. Add -1 and -1 to get -2.
\frac{\mathrm{d}}{\mathrm{d}g}(g^{6}h^{-1}h^{0}h)
To multiply powers of the same base, add their exponents. Add -2 and 8 to get 6.
\frac{\mathrm{d}}{\mathrm{d}g}(g^{6}h^{-1}h)
To multiply powers of the same base, add their exponents. Add -1 and 0 to get -1.
\frac{\mathrm{d}}{\mathrm{d}g}(g^{6})
Multiply h^{-1} and h to get 1.
6g^{6-1}
The derivative of ax^{n} is nax^{n-1}.
6g^{5}
Subtract 1 from 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}