Solve for g
g=\frac{x\left(3-x\right)}{4}
x\neq 3\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{-\sqrt{9-16g}+3}{2}
x=\frac{\sqrt{9-16g}+3}{2}\text{, }g\neq 0
Solve for x
x=\frac{-\sqrt{9-16g}+3}{2}
x=\frac{\sqrt{9-16g}+3}{2}\text{, }g\neq 0\text{ and }g\leq \frac{9}{16}
Graph
Share
Copied to clipboard
g^{-1}x\left(-x+3\right)=4
Multiply both sides of the equation by -x+3.
-g^{-1}x^{2}+3g^{-1}x=4
Use the distributive property to multiply g^{-1}x by -x+3.
-\frac{1}{g}x^{2}+3\times \frac{1}{g}x=4
Reorder the terms.
-x^{2}+3\times 1x=4g
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
-x^{2}+3x=4g
Do the multiplications.
4g=-x^{2}+3x
Swap sides so that all variable terms are on the left hand side.
4g=3x-x^{2}
The equation is in standard form.
\frac{4g}{4}=\frac{x\left(3-x\right)}{4}
Divide both sides by 4.
g=\frac{x\left(3-x\right)}{4}
Dividing by 4 undoes the multiplication by 4.
g=\frac{x\left(3-x\right)}{4}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}