g = \cos ( 3 x ) \cdot d x
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{g}{x\cos(3x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}+\frac{\pi }{6}\text{ and }x\neq 0\\d\in \mathrm{C}\text{, }&\left(x=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}+\frac{\pi }{6}\right)\text{ and }g=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{g}{x\cos(3x)}\text{, }&x\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}+\frac{\pi }{6}\\d\in \mathrm{R}\text{, }&\left(\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{3}+\frac{\pi }{6}\text{ or }x=0\right)\text{ and }g=0\end{matrix}\right.
Solve for g
g=dx\cos(3x)
Graph
Share
Copied to clipboard
\cos(3x)dx=g
Swap sides so that all variable terms are on the left hand side.
x\cos(3x)d=g
The equation is in standard form.
\frac{x\cos(3x)d}{x\cos(3x)}=\frac{g}{x\cos(3x)}
Divide both sides by \cos(3x)x.
d=\frac{g}{x\cos(3x)}
Dividing by \cos(3x)x undoes the multiplication by \cos(3x)x.
\cos(3x)dx=g
Swap sides so that all variable terms are on the left hand side.
x\cos(3x)d=g
The equation is in standard form.
\frac{x\cos(3x)d}{x\cos(3x)}=\frac{g}{x\cos(3x)}
Divide both sides by \cos(3x)x.
d=\frac{g}{x\cos(3x)}
Dividing by \cos(3x)x undoes the multiplication by \cos(3x)x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}