Skip to main content
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

fx\times 2c=a\left(e^{cx}+e^{\left(-c\right)x}\right)
Multiply both sides of the equation by 2c.
fx\times 2c=ae^{cx}+ae^{\left(-c\right)x}
Use the distributive property to multiply a by e^{cx}+e^{\left(-c\right)x}.
ae^{cx}+ae^{\left(-c\right)x}=fx\times 2c
Swap sides so that all variable terms are on the left hand side.
ae^{cx}+ae^{-cx}=2cfx
Reorder the terms.
\left(e^{cx}+e^{-cx}\right)a=2cfx
Combine all terms containing a.
\left(\frac{1}{e^{cx}}+e^{cx}\right)a=2cfx
The equation is in standard form.
\frac{\left(\frac{1}{e^{cx}}+e^{cx}\right)a}{\frac{1}{e^{cx}}+e^{cx}}=\frac{2cfx}{\frac{1}{e^{cx}}+e^{cx}}
Divide both sides by e^{cx}+e^{-cx}.
a=\frac{2cfx}{\frac{1}{e^{cx}}+e^{cx}}
Dividing by e^{cx}+e^{-cx} undoes the multiplication by e^{cx}+e^{-cx}.
a=\frac{2cfxe^{cx}}{e^{2cx}+1}
Divide 2cfx by e^{cx}+e^{-cx}.