Solve for a
a=\frac{2cfxe^{cx}}{e^{2cx}+1}
c\neq 0
Graph
Share
Copied to clipboard
fx\times 2c=a\left(e^{cx}+e^{\left(-c\right)x}\right)
Multiply both sides of the equation by 2c.
fx\times 2c=ae^{cx}+ae^{\left(-c\right)x}
Use the distributive property to multiply a by e^{cx}+e^{\left(-c\right)x}.
ae^{cx}+ae^{\left(-c\right)x}=fx\times 2c
Swap sides so that all variable terms are on the left hand side.
ae^{cx}+ae^{-cx}=2cfx
Reorder the terms.
\left(e^{cx}+e^{-cx}\right)a=2cfx
Combine all terms containing a.
\left(\frac{1}{e^{cx}}+e^{cx}\right)a=2cfx
The equation is in standard form.
\frac{\left(\frac{1}{e^{cx}}+e^{cx}\right)a}{\frac{1}{e^{cx}}+e^{cx}}=\frac{2cfx}{\frac{1}{e^{cx}}+e^{cx}}
Divide both sides by e^{cx}+e^{-cx}.
a=\frac{2cfx}{\frac{1}{e^{cx}}+e^{cx}}
Dividing by e^{cx}+e^{-cx} undoes the multiplication by e^{cx}+e^{-cx}.
a=\frac{2cfxe^{cx}}{e^{2cx}+1}
Divide 2cfx by e^{cx}+e^{-cx}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}