Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{3b^{2}}{x}+x-2b\text{, }&x\neq 0\\f\in \mathrm{C}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{3b^{2}}{x}+x-2b\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
b=\frac{\sqrt{x\left(3f-2x\right)}+x}{3}
b=\frac{-\sqrt{x\left(3f-2x\right)}+x}{3}
Solve for b
b=\frac{\sqrt{x\left(3f-2x\right)}+x}{3}
b=\frac{-\sqrt{x\left(3f-2x\right)}+x}{3}\text{, }\left(x\leq 0\text{ or }f\geq \frac{2x}{3}\right)\text{ and }\left(x\geq 0\text{ or }f\leq \frac{2x}{3}\right)
Graph
Share
Copied to clipboard
xf=x^{2}-2bx+3b^{2}
The equation is in standard form.
\frac{xf}{x}=\frac{x^{2}-2bx+3b^{2}}{x}
Divide both sides by x.
f=\frac{x^{2}-2bx+3b^{2}}{x}
Dividing by x undoes the multiplication by x.
f=\frac{3b^{2}}{x}+x-2b
Divide x^{2}-2bx+3b^{2} by x.
xf=x^{2}-2bx+3b^{2}
The equation is in standard form.
\frac{xf}{x}=\frac{x^{2}-2bx+3b^{2}}{x}
Divide both sides by x.
f=\frac{x^{2}-2bx+3b^{2}}{x}
Dividing by x undoes the multiplication by x.
f=\frac{3b^{2}}{x}+x-2b
Divide x^{2}-2bx+3b^{2} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}