Solve for f
f=\frac{1}{3}+\frac{2}{q}
q\neq 0
Solve for q
q=\frac{6}{3f-1}
f\neq \frac{1}{3}
Share
Copied to clipboard
3fq=q+6
Multiply both sides of the equation by 3.
3qf=q+6
The equation is in standard form.
\frac{3qf}{3q}=\frac{q+6}{3q}
Divide both sides by 3q.
f=\frac{q+6}{3q}
Dividing by 3q undoes the multiplication by 3q.
f=\frac{1}{3}+\frac{2}{q}
Divide q+6 by 3q.
3fq=q+6
Multiply both sides of the equation by 3.
3fq-q=6
Subtract q from both sides.
\left(3f-1\right)q=6
Combine all terms containing q.
\frac{\left(3f-1\right)q}{3f-1}=\frac{6}{3f-1}
Divide both sides by 3f-1.
q=\frac{6}{3f-1}
Dividing by 3f-1 undoes the multiplication by 3f-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}