Solve for a
\left\{\begin{matrix}a=-\frac{2}{-2x^{2}+f-4}\text{, }&f\neq 2x^{2}+4\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=2x^{2}+4-\frac{2}{a}\text{, }&a\neq 0\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fax=2ax^{3}-\left(2x-4ax\right)
Use the distributive property to multiply 2-4a by x.
fax=2ax^{3}-2x+4ax
To find the opposite of 2x-4ax, find the opposite of each term.
fax-2ax^{3}=-2x+4ax
Subtract 2ax^{3} from both sides.
fax-2ax^{3}-4ax=-2x
Subtract 4ax from both sides.
\left(fx-2x^{3}-4x\right)a=-2x
Combine all terms containing a.
\left(-2x^{3}+fx-4x\right)a=-2x
The equation is in standard form.
\frac{\left(-2x^{3}+fx-4x\right)a}{-2x^{3}+fx-4x}=-\frac{2x}{-2x^{3}+fx-4x}
Divide both sides by fx-2x^{3}-4x.
a=-\frac{2x}{-2x^{3}+fx-4x}
Dividing by fx-2x^{3}-4x undoes the multiplication by fx-2x^{3}-4x.
a=-\frac{2}{-2x^{2}+f-4}
Divide -2x by fx-2x^{3}-4x.
fax=2ax^{3}-\left(2x-4ax\right)
Use the distributive property to multiply 2-4a by x.
fax=2ax^{3}-2x+4ax
To find the opposite of 2x-4ax, find the opposite of each term.
axf=2ax^{3}+4ax-2x
The equation is in standard form.
\frac{axf}{ax}=\frac{2x\left(ax^{2}+2a-1\right)}{ax}
Divide both sides by ax.
f=\frac{2x\left(ax^{2}+2a-1\right)}{ax}
Dividing by ax undoes the multiplication by ax.
f=2x^{2}+4-\frac{2}{a}
Divide 2x\left(ax^{2}-1+2a\right) by ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}