Solve for f
f=\frac{2}{2x+1}
x\neq -\frac{1}{2}
Solve for x
x=-\frac{1}{2}+\frac{1}{f}
f\neq 0
Share
Copied to clipboard
f\frac{\mathrm{d}}{\mathrm{d}x}(x)\left(2x+1\right)=2
Multiply both sides of the equation by 2x+1.
2f\frac{\mathrm{d}}{\mathrm{d}x}(x)x+f\frac{\mathrm{d}}{\mathrm{d}x}(x)=2
Use the distributive property to multiply f\frac{\mathrm{d}}{\mathrm{d}x}(x) by 2x+1.
\left(2\frac{\mathrm{d}}{\mathrm{d}x}(x)x+\frac{\mathrm{d}}{\mathrm{d}x}(x)\right)f=2
Combine all terms containing f.
\left(2x+1\right)f=2
The equation is in standard form.
\frac{\left(2x+1\right)f}{2x+1}=\frac{2}{2x+1}
Divide both sides by 2x+1.
f=\frac{2}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}