Evaluate
\frac{x\left(x-1\right)\left(2x-3\right)\left(2x+1\right)}{4}
Expand
x^{4}-2x^{3}+\frac{x^{2}}{4}+\frac{3x}{4}
Graph
Share
Copied to clipboard
\left(x^{2}+x\left(-\frac{3}{2}\right)\right)\left(x-1\right)\left(x+\frac{1}{2}\right)
Use the distributive property to multiply x by x-\frac{3}{2}.
\left(x^{3}-x^{2}+x\left(-\frac{3}{2}\right)x+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{2}+x\left(-\frac{3}{2}\right) by each term of x-1.
\left(x^{3}-x^{2}+x^{2}\left(-\frac{3}{2}\right)+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\left(x^{3}-\frac{5}{2}x^{2}+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Combine -x^{2} and x^{2}\left(-\frac{3}{2}\right) to get -\frac{5}{2}x^{2}.
\left(x^{3}-\frac{5}{2}x^{2}+x\times \frac{3}{2}\right)\left(x+\frac{1}{2}\right)
Multiply -\frac{3}{2} and -1 to get \frac{3}{2}.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{2}x-\frac{5}{2}x^{2}\times \frac{1}{2}+x\times \frac{3}{2}x+x\times \frac{3}{2}\times \frac{1}{2}
Apply the distributive property by multiplying each term of x^{3}-\frac{5}{2}x^{2}+x\times \frac{3}{2} by each term of x+\frac{1}{2}.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x\times \frac{3}{2}x+x\times \frac{3}{2}\times \frac{1}{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Multiply x and x to get x^{2}.
x^{4}-2x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Combine x^{3}\times \frac{1}{2} and -\frac{5}{2}x^{3} to get -2x^{3}.
x^{4}-2x^{3}+\frac{-5}{2\times 2}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Multiply -\frac{5}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
x^{4}-2x^{3}+\frac{-5}{4}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Do the multiplications in the fraction \frac{-5}{2\times 2}.
x^{4}-2x^{3}-\frac{5}{4}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3}{2}\times \frac{1}{2}
Combine -\frac{5}{4}x^{2} and x^{2}\times \frac{3}{2} to get \frac{1}{4}x^{2}.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3\times 1}{2\times 2}
Multiply \frac{3}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3}{4}
Do the multiplications in the fraction \frac{3\times 1}{2\times 2}.
\left(x^{2}+x\left(-\frac{3}{2}\right)\right)\left(x-1\right)\left(x+\frac{1}{2}\right)
Use the distributive property to multiply x by x-\frac{3}{2}.
\left(x^{3}-x^{2}+x\left(-\frac{3}{2}\right)x+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{2}+x\left(-\frac{3}{2}\right) by each term of x-1.
\left(x^{3}-x^{2}+x^{2}\left(-\frac{3}{2}\right)+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\left(x^{3}-\frac{5}{2}x^{2}+x\left(-\frac{3}{2}\right)\left(-1\right)\right)\left(x+\frac{1}{2}\right)
Combine -x^{2} and x^{2}\left(-\frac{3}{2}\right) to get -\frac{5}{2}x^{2}.
\left(x^{3}-\frac{5}{2}x^{2}+x\times \frac{3}{2}\right)\left(x+\frac{1}{2}\right)
Multiply -\frac{3}{2} and -1 to get \frac{3}{2}.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{2}x-\frac{5}{2}x^{2}\times \frac{1}{2}+x\times \frac{3}{2}x+x\times \frac{3}{2}\times \frac{1}{2}
Apply the distributive property by multiplying each term of x^{3}-\frac{5}{2}x^{2}+x\times \frac{3}{2} by each term of x+\frac{1}{2}.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x\times \frac{3}{2}x+x\times \frac{3}{2}\times \frac{1}{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}+x^{3}\times \frac{1}{2}-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Multiply x and x to get x^{2}.
x^{4}-2x^{3}-\frac{5}{2}x^{2}\times \frac{1}{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Combine x^{3}\times \frac{1}{2} and -\frac{5}{2}x^{3} to get -2x^{3}.
x^{4}-2x^{3}+\frac{-5}{2\times 2}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Multiply -\frac{5}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
x^{4}-2x^{3}+\frac{-5}{4}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Do the multiplications in the fraction \frac{-5}{2\times 2}.
x^{4}-2x^{3}-\frac{5}{4}x^{2}+x^{2}\times \frac{3}{2}+x\times \frac{3}{2}\times \frac{1}{2}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3}{2}\times \frac{1}{2}
Combine -\frac{5}{4}x^{2} and x^{2}\times \frac{3}{2} to get \frac{1}{4}x^{2}.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3\times 1}{2\times 2}
Multiply \frac{3}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
x^{4}-2x^{3}+\frac{1}{4}x^{2}+x\times \frac{3}{4}
Do the multiplications in the fraction \frac{3\times 1}{2\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}