Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x^{4}+3x^{3}+x\right)}{3}+\frac{x^{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4}+3x^{3}+x times \frac{3}{3}.
\frac{3\left(x^{4}+3x^{3}+x\right)+x^{2}}{3}
Since \frac{3\left(x^{4}+3x^{3}+x\right)}{3} and \frac{x^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+9x^{3}+3x+x^{2}}{3}
Do the multiplications in 3\left(x^{4}+3x^{3}+x\right)+x^{2}.
\frac{3x^{4}+9x^{3}+x^{2}+3x}{3}
Factor out \frac{1}{3}.
x\left(3x^{3}+9x^{2}+x+3\right)
Consider 3x^{4}+9x^{3}+x^{2}+3x. Factor out x.
3x^{2}\left(x+3\right)+x+3
Consider 3x^{3}+9x^{2}+x+3. Do the grouping 3x^{3}+9x^{2}+x+3=\left(3x^{3}+9x^{2}\right)+\left(x+3\right), and factor out 3x^{2} in 3x^{3}+9x^{2}.
\left(x+3\right)\left(3x^{2}+1\right)
Factor out common term x+3 by using distributive property.
\frac{x\left(x+3\right)\left(3x^{2}+1\right)}{3}
Rewrite the complete factored expression. Polynomial 3x^{2}+1 is not factored since it does not have any rational roots.