Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=13 ab=30\left(-10\right)=-300
Factor the expression by grouping. First, the expression needs to be rewritten as 30x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,300 -2,150 -3,100 -4,75 -5,60 -6,50 -10,30 -12,25 -15,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -300.
-1+300=299 -2+150=148 -3+100=97 -4+75=71 -5+60=55 -6+50=44 -10+30=20 -12+25=13 -15+20=5
Calculate the sum for each pair.
a=-12 b=25
The solution is the pair that gives sum 13.
\left(30x^{2}-12x\right)+\left(25x-10\right)
Rewrite 30x^{2}+13x-10 as \left(30x^{2}-12x\right)+\left(25x-10\right).
6x\left(5x-2\right)+5\left(5x-2\right)
Factor out 6x in the first and 5 in the second group.
\left(5x-2\right)\left(6x+5\right)
Factor out common term 5x-2 by using distributive property.
30x^{2}+13x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 30\left(-10\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\times 30\left(-10\right)}}{2\times 30}
Square 13.
x=\frac{-13±\sqrt{169-120\left(-10\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-13±\sqrt{169+1200}}{2\times 30}
Multiply -120 times -10.
x=\frac{-13±\sqrt{1369}}{2\times 30}
Add 169 to 1200.
x=\frac{-13±37}{2\times 30}
Take the square root of 1369.
x=\frac{-13±37}{60}
Multiply 2 times 30.
x=\frac{24}{60}
Now solve the equation x=\frac{-13±37}{60} when ± is plus. Add -13 to 37.
x=\frac{2}{5}
Reduce the fraction \frac{24}{60} to lowest terms by extracting and canceling out 12.
x=-\frac{50}{60}
Now solve the equation x=\frac{-13±37}{60} when ± is minus. Subtract 37 from -13.
x=-\frac{5}{6}
Reduce the fraction \frac{-50}{60} to lowest terms by extracting and canceling out 10.
30x^{2}+13x-10=30\left(x-\frac{2}{5}\right)\left(x-\left(-\frac{5}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{5} for x_{1} and -\frac{5}{6} for x_{2}.
30x^{2}+13x-10=30\left(x-\frac{2}{5}\right)\left(x+\frac{5}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30x^{2}+13x-10=30\times \frac{5x-2}{5}\left(x+\frac{5}{6}\right)
Subtract \frac{2}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+13x-10=30\times \frac{5x-2}{5}\times \frac{6x+5}{6}
Add \frac{5}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+13x-10=30\times \frac{\left(5x-2\right)\left(6x+5\right)}{5\times 6}
Multiply \frac{5x-2}{5} times \frac{6x+5}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
30x^{2}+13x-10=30\times \frac{\left(5x-2\right)\left(6x+5\right)}{30}
Multiply 5 times 6.
30x^{2}+13x-10=\left(5x-2\right)\left(6x+5\right)
Cancel out 30, the greatest common factor in 30 and 30.
x ^ 2 +\frac{13}{30}x -\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 30
r + s = -\frac{13}{30} rs = -\frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{13}{60} - u s = -\frac{13}{60} + u
Two numbers r and s sum up to -\frac{13}{30} exactly when the average of the two numbers is \frac{1}{2}*-\frac{13}{30} = -\frac{13}{60}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{13}{60} - u) (-\frac{13}{60} + u) = -\frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{3}
\frac{169}{3600} - u^2 = -\frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{3}-\frac{169}{3600} = -\frac{1369}{3600}
Simplify the expression by subtracting \frac{169}{3600} on both sides
u^2 = \frac{1369}{3600} u = \pm\sqrt{\frac{1369}{3600}} = \pm \frac{37}{60}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{13}{60} - \frac{37}{60} = -0.833 s = -\frac{13}{60} + \frac{37}{60} = 0.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.