Solve for f
\left\{\begin{matrix}f=\frac{3x^{7}-4x^{2}+14x_{2}-3x_{7}}{10x^{3}}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&x_{7}=\frac{14x_{2}}{3}\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3x^{7}-4x^{2}+15-10x^{3}f=3x_{7}-4x_{2}+15-10x_{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
3x^{7}-4x^{2}+15-10x^{3}f=3x_{7}-14x_{2}+15
Combine -4x_{2} and -10x_{2} to get -14x_{2}.
-4x^{2}+15-10x^{3}f=3x_{7}-14x_{2}+15-3x^{7}
Subtract 3x^{7} from both sides.
15-10x^{3}f=3x_{7}-14x_{2}+15-3x^{7}+4x^{2}
Add 4x^{2} to both sides.
-10x^{3}f=3x_{7}-14x_{2}+15-3x^{7}+4x^{2}-15
Subtract 15 from both sides.
-10x^{3}f=3x_{7}-14x_{2}-3x^{7}+4x^{2}
Subtract 15 from 15 to get 0.
\left(-10x^{3}\right)f=3x_{7}-14x_{2}+4x^{2}-3x^{7}
The equation is in standard form.
\frac{\left(-10x^{3}\right)f}{-10x^{3}}=\frac{3x_{7}-14x_{2}+4x^{2}-3x^{7}}{-10x^{3}}
Divide both sides by -10x^{3}.
f=\frac{3x_{7}-14x_{2}+4x^{2}-3x^{7}}{-10x^{3}}
Dividing by -10x^{3} undoes the multiplication by -10x^{3}.
f=-\frac{3x_{7}-14x_{2}+4x^{2}-3x^{7}}{10x^{3}}
Divide 3x_{7}-14x_{2}-3x^{7}+4x^{2} by -10x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}