Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+16x+29=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 29}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\times 2\times 29}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\times 29}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256-232}}{2\times 2}
Multiply -8 times 29.
x=\frac{-16±\sqrt{24}}{2\times 2}
Add 256 to -232.
x=\frac{-16±2\sqrt{6}}{2\times 2}
Take the square root of 24.
x=\frac{-16±2\sqrt{6}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{6}-16}{4}
Now solve the equation x=\frac{-16±2\sqrt{6}}{4} when ± is plus. Add -16 to 2\sqrt{6}.
x=\frac{\sqrt{6}}{2}-4
Divide -16+2\sqrt{6} by 4.
x=\frac{-2\sqrt{6}-16}{4}
Now solve the equation x=\frac{-16±2\sqrt{6}}{4} when ± is minus. Subtract 2\sqrt{6} from -16.
x=-\frac{\sqrt{6}}{2}-4
Divide -16-2\sqrt{6} by 4.
2x^{2}+16x+29=2\left(x-\left(\frac{\sqrt{6}}{2}-4\right)\right)\left(x-\left(-\frac{\sqrt{6}}{2}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4+\frac{\sqrt{6}}{2} for x_{1} and -4-\frac{\sqrt{6}}{2} for x_{2}.
x ^ 2 +8x +\frac{29}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = -8 rs = \frac{29}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = \frac{29}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{29}{2}
16 - u^2 = \frac{29}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{29}{2}-16 = -\frac{3}{2}
Simplify the expression by subtracting 16 on both sides
u^2 = \frac{3}{2} u = \pm\sqrt{\frac{3}{2}} = \pm \frac{\sqrt{3}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - \frac{\sqrt{3}}{\sqrt{2}} = -5.225 s = -4 + \frac{\sqrt{3}}{\sqrt{2}} = -2.775
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.