Factor
\left(5-x\right)^{3}
Evaluate
\left(5-x\right)^{3}
Graph
Share
Copied to clipboard
\left(x-5\right)\left(-x^{2}+10x-25\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 125 and q divides the leading coefficient -1. One such root is 5. Factor the polynomial by dividing it by x-5.
a+b=10 ab=-\left(-25\right)=25
Consider -x^{2}+10x-25. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-25. To find a and b, set up a system to be solved.
1,25 5,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 25.
1+25=26 5+5=10
Calculate the sum for each pair.
a=5 b=5
The solution is the pair that gives sum 10.
\left(-x^{2}+5x\right)+\left(5x-25\right)
Rewrite -x^{2}+10x-25 as \left(-x^{2}+5x\right)+\left(5x-25\right).
-x\left(x-5\right)+5\left(x-5\right)
Factor out -x in the first and 5 in the second group.
\left(x-5\right)\left(-x+5\right)
Factor out common term x-5 by using distributive property.
\left(-x+5\right)\left(x-5\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}