Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-2x^{2}+x\right)
Factor out 2.
x\left(-2x+1\right)
Consider -2x^{2}+x. Factor out x.
2x\left(-2x+1\right)
Rewrite the complete factored expression.
-4x^{2}+2x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±2}{2\left(-4\right)}
Take the square root of 2^{2}.
x=\frac{-2±2}{-8}
Multiply 2 times -4.
x=\frac{0}{-8}
Now solve the equation x=\frac{-2±2}{-8} when ± is plus. Add -2 to 2.
x=0
Divide 0 by -8.
x=-\frac{4}{-8}
Now solve the equation x=\frac{-2±2}{-8} when ± is minus. Subtract 2 from -2.
x=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
-4x^{2}+2x=-4x\left(x-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{1}{2} for x_{2}.
-4x^{2}+2x=-4x\times \frac{-2x+1}{-2}
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+2x=2x\left(-2x+1\right)
Cancel out 2, the greatest common factor in -4 and -2.