Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-9x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\left(-3\right)}
Add 81 to 96.
x=\frac{9±\sqrt{177}}{2\left(-3\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{177}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{177}+9}{-6}
Now solve the equation x=\frac{9±\sqrt{177}}{-6} when ± is plus. Add 9 to \sqrt{177}.
x=-\frac{\sqrt{177}}{6}-\frac{3}{2}
Divide 9+\sqrt{177} by -6.
x=\frac{9-\sqrt{177}}{-6}
Now solve the equation x=\frac{9±\sqrt{177}}{-6} when ± is minus. Subtract \sqrt{177} from 9.
x=\frac{\sqrt{177}}{6}-\frac{3}{2}
Divide 9-\sqrt{177} by -6.
-3x^{2}-9x+8=-3\left(x-\left(-\frac{\sqrt{177}}{6}-\frac{3}{2}\right)\right)\left(x-\left(\frac{\sqrt{177}}{6}-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{2}-\frac{\sqrt{177}}{6} for x_{1} and -\frac{3}{2}+\frac{\sqrt{177}}{6} for x_{2}.
x ^ 2 +3x -\frac{8}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -3 rs = -\frac{8}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{2} - u s = -\frac{3}{2} + u
Two numbers r and s sum up to -3 exactly when the average of the two numbers is \frac{1}{2}*-3 = -\frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{2} - u) (-\frac{3}{2} + u) = -\frac{8}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{3}
\frac{9}{4} - u^2 = -\frac{8}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{3}-\frac{9}{4} = -\frac{59}{12}
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = \frac{59}{12} u = \pm\sqrt{\frac{59}{12}} = \pm \frac{\sqrt{59}}{\sqrt{12}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{2} - \frac{\sqrt{59}}{\sqrt{12}} = -3.717 s = -\frac{3}{2} + \frac{\sqrt{59}}{\sqrt{12}} = 0.717
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.