Factor
2\left(-x-4\right)\left(10x+13\right)
Evaluate
-20x^{2}-106x-104
Graph
Share
Copied to clipboard
2\left(-10x^{2}-53x-52\right)
Factor out 2.
a+b=-53 ab=-10\left(-52\right)=520
Consider -10x^{2}-53x-52. Factor the expression by grouping. First, the expression needs to be rewritten as -10x^{2}+ax+bx-52. To find a and b, set up a system to be solved.
-1,-520 -2,-260 -4,-130 -5,-104 -8,-65 -10,-52 -13,-40 -20,-26
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 520.
-1-520=-521 -2-260=-262 -4-130=-134 -5-104=-109 -8-65=-73 -10-52=-62 -13-40=-53 -20-26=-46
Calculate the sum for each pair.
a=-13 b=-40
The solution is the pair that gives sum -53.
\left(-10x^{2}-13x\right)+\left(-40x-52\right)
Rewrite -10x^{2}-53x-52 as \left(-10x^{2}-13x\right)+\left(-40x-52\right).
-x\left(10x+13\right)-4\left(10x+13\right)
Factor out -x in the first and -4 in the second group.
\left(10x+13\right)\left(-x-4\right)
Factor out common term 10x+13 by using distributive property.
2\left(10x+13\right)\left(-x-4\right)
Rewrite the complete factored expression.
-20x^{2}-106x-104=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-106\right)±\sqrt{\left(-106\right)^{2}-4\left(-20\right)\left(-104\right)}}{2\left(-20\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-106\right)±\sqrt{11236-4\left(-20\right)\left(-104\right)}}{2\left(-20\right)}
Square -106.
x=\frac{-\left(-106\right)±\sqrt{11236+80\left(-104\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-\left(-106\right)±\sqrt{11236-8320}}{2\left(-20\right)}
Multiply 80 times -104.
x=\frac{-\left(-106\right)±\sqrt{2916}}{2\left(-20\right)}
Add 11236 to -8320.
x=\frac{-\left(-106\right)±54}{2\left(-20\right)}
Take the square root of 2916.
x=\frac{106±54}{2\left(-20\right)}
The opposite of -106 is 106.
x=\frac{106±54}{-40}
Multiply 2 times -20.
x=\frac{160}{-40}
Now solve the equation x=\frac{106±54}{-40} when ± is plus. Add 106 to 54.
x=-4
Divide 160 by -40.
x=\frac{52}{-40}
Now solve the equation x=\frac{106±54}{-40} when ± is minus. Subtract 54 from 106.
x=-\frac{13}{10}
Reduce the fraction \frac{52}{-40} to lowest terms by extracting and canceling out 4.
-20x^{2}-106x-104=-20\left(x-\left(-4\right)\right)\left(x-\left(-\frac{13}{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and -\frac{13}{10} for x_{2}.
-20x^{2}-106x-104=-20\left(x+4\right)\left(x+\frac{13}{10}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-20x^{2}-106x-104=-20\left(x+4\right)\times \frac{-10x-13}{-10}
Add \frac{13}{10} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-20x^{2}-106x-104=2\left(x+4\right)\left(-10x-13\right)
Cancel out 10, the greatest common factor in -20 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}