f ( x ) = - ( x + 2,5 ) ^ { 2 } - 1
Solve for f
f=-x-5-\frac{29}{4x}
x\neq 0
Solve for x
x=\frac{\sqrt{f^{2}+10f-4}-f-5}{2}
x=\frac{-\sqrt{f^{2}+10f-4}-f-5}{2}\text{, }f\geq \sqrt{29}-5\text{ or }f\leq -\sqrt{29}-5
Graph
Share
Copied to clipboard
fx=-\left(x^{2}+5x+6,25\right)-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2,5\right)^{2}.
fx=-x^{2}-5x-6,25-1
To find the opposite of x^{2}+5x+6,25, find the opposite of each term.
fx=-x^{2}-5x-7,25
Subtract 1 from -6,25 to get -7,25.
xf=-x^{2}-5x-7,25
The equation is in standard form.
\frac{xf}{x}=\frac{-x^{2}-5x-7,25}{x}
Divide both sides by x.
f=\frac{-x^{2}-5x-7,25}{x}
Dividing by x undoes the multiplication by x.
f=-x-5-\frac{29}{4x}
Divide -x^{2}-5x-7,25 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}