Solve for g
g=\frac{4\left(7x-2\right)}{9x^{3}}
x\neq \frac{2}{7}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
\left(-\frac{9x}{7x-2}\right)gxx\left(7x-2\right)=-\left(7x-2\right)\times 4
Multiply both sides of the equation by x\left(7x-2\right), the least common multiple of 7x-2,x.
\left(-\frac{9x}{7x-2}\right)gx^{2}\left(7x-2\right)=-\left(7x-2\right)\times 4
Multiply x and x to get x^{2}.
\frac{-9xg}{7x-2}x^{2}\left(7x-2\right)=-\left(7x-2\right)\times 4
Express \left(-\frac{9x}{7x-2}\right)g as a single fraction.
\frac{-9xgx^{2}}{7x-2}\left(7x-2\right)=-\left(7x-2\right)\times 4
Express \frac{-9xg}{7x-2}x^{2} as a single fraction.
\frac{-9xgx^{2}\left(7x-2\right)}{7x-2}=-\left(7x-2\right)\times 4
Express \frac{-9xgx^{2}}{7x-2}\left(7x-2\right) as a single fraction.
-9gxx^{2}=-\left(7x-2\right)\times 4
Cancel out 7x-2 in both numerator and denominator.
-9gx^{3}=-\left(7x-2\right)\times 4
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-9gx^{3}=-\left(28x-8\right)
Use the distributive property to multiply 7x-2 by 4.
-9gx^{3}=-28x+8
To find the opposite of 28x-8, find the opposite of each term.
\left(-9x^{3}\right)g=8-28x
The equation is in standard form.
\frac{\left(-9x^{3}\right)g}{-9x^{3}}=\frac{8-28x}{-9x^{3}}
Divide both sides by -9x^{3}.
g=\frac{8-28x}{-9x^{3}}
Dividing by -9x^{3} undoes the multiplication by -9x^{3}.
g=-\frac{4\left(2-7x\right)}{9x^{3}}
Divide -28x+8 by -9x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}