Evaluate
-\frac{2\left(x-5\right)\left(x+1\right)}{3}
Expand
\frac{10+8x-2x^{2}}{3}
Graph
Share
Copied to clipboard
\left(-\frac{2}{3}x-\frac{2}{3}\right)\left(x-5\right)
Use the distributive property to multiply -\frac{2}{3} by x+1.
-\frac{2}{3}xx-\frac{2}{3}x\left(-5\right)-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Apply the distributive property by multiplying each term of -\frac{2}{3}x-\frac{2}{3} by each term of x-5.
-\frac{2}{3}x^{2}-\frac{2}{3}x\left(-5\right)-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Multiply x and x to get x^{2}.
-\frac{2}{3}x^{2}+\frac{-2\left(-5\right)}{3}x-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Express -\frac{2}{3}\left(-5\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{10}{3}x-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Multiply -2 and -5 to get 10.
-\frac{2}{3}x^{2}+\frac{8}{3}x-\frac{2}{3}\left(-5\right)
Combine \frac{10}{3}x and -\frac{2}{3}x to get \frac{8}{3}x.
-\frac{2}{3}x^{2}+\frac{8}{3}x+\frac{-2\left(-5\right)}{3}
Express -\frac{2}{3}\left(-5\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{8}{3}x+\frac{10}{3}
Multiply -2 and -5 to get 10.
\left(-\frac{2}{3}x-\frac{2}{3}\right)\left(x-5\right)
Use the distributive property to multiply -\frac{2}{3} by x+1.
-\frac{2}{3}xx-\frac{2}{3}x\left(-5\right)-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Apply the distributive property by multiplying each term of -\frac{2}{3}x-\frac{2}{3} by each term of x-5.
-\frac{2}{3}x^{2}-\frac{2}{3}x\left(-5\right)-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Multiply x and x to get x^{2}.
-\frac{2}{3}x^{2}+\frac{-2\left(-5\right)}{3}x-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Express -\frac{2}{3}\left(-5\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{10}{3}x-\frac{2}{3}x-\frac{2}{3}\left(-5\right)
Multiply -2 and -5 to get 10.
-\frac{2}{3}x^{2}+\frac{8}{3}x-\frac{2}{3}\left(-5\right)
Combine \frac{10}{3}x and -\frac{2}{3}x to get \frac{8}{3}x.
-\frac{2}{3}x^{2}+\frac{8}{3}x+\frac{-2\left(-5\right)}{3}
Express -\frac{2}{3}\left(-5\right) as a single fraction.
-\frac{2}{3}x^{2}+\frac{8}{3}x+\frac{10}{3}
Multiply -2 and -5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}