Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a}{a-b}}{\frac{2}{a+b}}
Factor a^{2}-b^{2}.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{3a^{2}+b^{2}-2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Since \frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+b^{2}-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Do the multiplications in 3a^{2}+b^{2}-2a\left(a+b\right).
\frac{\frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Combine like terms in 3a^{2}+b^{2}-2a^{2}-2ab.
\frac{\frac{\left(a-b\right)^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Factor the expressions that are not already factored in \frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{a-b}{a+b}}{\frac{2}{a+b}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\times 2}
Divide \frac{a-b}{a+b} by \frac{2}{a+b} by multiplying \frac{a-b}{a+b} by the reciprocal of \frac{2}{a+b}.
\frac{a-b}{2}
Cancel out a+b in both numerator and denominator.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a}{a-b}}{\frac{2}{a+b}}
Factor a^{2}-b^{2}.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{3a^{2}+b^{2}-2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Since \frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+b^{2}-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Do the multiplications in 3a^{2}+b^{2}-2a\left(a+b\right).
\frac{\frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Combine like terms in 3a^{2}+b^{2}-2a^{2}-2ab.
\frac{\frac{\left(a-b\right)^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Factor the expressions that are not already factored in \frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{a-b}{a+b}}{\frac{2}{a+b}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\times 2}
Divide \frac{a-b}{a+b} by \frac{2}{a+b} by multiplying \frac{a-b}{a+b} by the reciprocal of \frac{2}{a+b}.
\frac{a-b}{2}
Cancel out a+b in both numerator and denominator.