Evaluate
\frac{a-b}{2}
Expand
\frac{a-b}{2}
Share
Copied to clipboard
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a}{a-b}}{\frac{2}{a+b}}
Factor a^{2}-b^{2}.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{3a^{2}+b^{2}-2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Since \frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+b^{2}-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Do the multiplications in 3a^{2}+b^{2}-2a\left(a+b\right).
\frac{\frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Combine like terms in 3a^{2}+b^{2}-2a^{2}-2ab.
\frac{\frac{\left(a-b\right)^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Factor the expressions that are not already factored in \frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{a-b}{a+b}}{\frac{2}{a+b}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\times 2}
Divide \frac{a-b}{a+b} by \frac{2}{a+b} by multiplying \frac{a-b}{a+b} by the reciprocal of \frac{2}{a+b}.
\frac{a-b}{2}
Cancel out a+b in both numerator and denominator.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a}{a-b}}{\frac{2}{a+b}}
Factor a^{2}-b^{2}.
\frac{\frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}-\frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{2a}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{3a^{2}+b^{2}-2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Since \frac{3a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)} and \frac{2a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}+b^{2}-2a^{2}-2ab}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Do the multiplications in 3a^{2}+b^{2}-2a\left(a+b\right).
\frac{\frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Combine like terms in 3a^{2}+b^{2}-2a^{2}-2ab.
\frac{\frac{\left(a-b\right)^{2}}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{a+b}}
Factor the expressions that are not already factored in \frac{a^{2}-2ab+b^{2}}{\left(a+b\right)\left(a-b\right)}.
\frac{\frac{a-b}{a+b}}{\frac{2}{a+b}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\times 2}
Divide \frac{a-b}{a+b} by \frac{2}{a+b} by multiplying \frac{a-b}{a+b} by the reciprocal of \frac{2}{a+b}.
\frac{a-b}{2}
Cancel out a+b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}