f ( x ) = \frac { x } { x + 1 } \quad [ 3,2 ]
Solve for f
\left\{\begin{matrix}f=\frac{16}{5\left(x+1\right)}\text{, }&x\neq -1\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-1+\frac{16}{5f}\text{, }&f\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
fx\left(x+1\right)=x\times 3,2
Multiply both sides of the equation by x+1.
fx^{2}+fx=x\times 3,2
Use the distributive property to multiply fx by x+1.
\left(x^{2}+x\right)f=x\times 3,2
Combine all terms containing f.
\left(x^{2}+x\right)f=\frac{16x}{5}
The equation is in standard form.
\frac{\left(x^{2}+x\right)f}{x^{2}+x}=\frac{16x}{5\left(x^{2}+x\right)}
Divide both sides by x^{2}+x.
f=\frac{16x}{5\left(x^{2}+x\right)}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
f=\frac{16}{5\left(x+1\right)}
Divide \frac{16x}{5} by x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}