Evaluate
\frac{x^{4}}{7}-2x
Factor
\frac{x\left(x^{3}-14\right)}{7}
Graph
Share
Copied to clipboard
\frac{x^{4}}{7}+\frac{7\left(-2\right)x}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{7}{7}.
\frac{x^{4}+7\left(-2\right)x}{7}
Since \frac{x^{4}}{7} and \frac{7\left(-2\right)x}{7} have the same denominator, add them by adding their numerators.
\frac{x^{4}-14x}{7}
Do the multiplications in x^{4}+7\left(-2\right)x.
\frac{x^{4}-14x}{7}
Factor out \frac{1}{7}.
x\left(x^{3}-14\right)
Consider x^{4}-14x. Factor out x.
\frac{x\left(x^{3}-14\right)}{7}
Rewrite the complete factored expression. Polynomial x^{3}-14 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}