Skip to main content
Solve for a
Tick mark Image
Solve for g
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+ax-x+1\right)e^{x}gx=-x^{2}
Use the distributive property to multiply a-1 by x.
\left(x^{2}e^{x}+axe^{x}-xe^{x}+e^{x}\right)gx=-x^{2}
Use the distributive property to multiply x^{2}+ax-x+1 by e^{x}.
\left(x^{2}e^{x}g+axe^{x}g-xe^{x}g+e^{x}g\right)x=-x^{2}
Use the distributive property to multiply x^{2}e^{x}+axe^{x}-xe^{x}+e^{x} by g.
e^{x}gx^{3}+ae^{x}gx^{2}-e^{x}gx^{2}+e^{x}gx=-x^{2}
Use the distributive property to multiply x^{2}e^{x}g+axe^{x}g-xe^{x}g+e^{x}g by x.
ae^{x}gx^{2}-e^{x}gx^{2}+e^{x}gx=-x^{2}-e^{x}gx^{3}
Subtract e^{x}gx^{3} from both sides.
ae^{x}gx^{2}+e^{x}gx=-x^{2}-e^{x}gx^{3}+e^{x}gx^{2}
Add e^{x}gx^{2} to both sides.
ae^{x}gx^{2}=-x^{2}-e^{x}gx^{3}+e^{x}gx^{2}-e^{x}gx
Subtract e^{x}gx from both sides.
agx^{2}e^{x}=-gx^{3}e^{x}+gx^{2}e^{x}-x^{2}-gxe^{x}
Reorder the terms.
gx^{2}e^{x}a=-gx^{3}e^{x}+gx^{2}e^{x}-x^{2}-gxe^{x}
The equation is in standard form.
\frac{gx^{2}e^{x}a}{gx^{2}e^{x}}=\frac{x\left(-gx^{2}e^{x}+gxe^{x}-x-ge^{x}\right)}{gx^{2}e^{x}}
Divide both sides by gx^{2}e^{x}.
a=\frac{x\left(-gx^{2}e^{x}+gxe^{x}-x-ge^{x}\right)}{gx^{2}e^{x}}
Dividing by gx^{2}e^{x} undoes the multiplication by gx^{2}e^{x}.
a=\frac{-gx^{2}e^{x}+gxe^{x}-x-ge^{x}}{gxe^{x}}
Divide x\left(-gx^{2}e^{x}+gxe^{x}-x-ge^{x}\right) by gx^{2}e^{x}.
\left(x^{2}+ax-x+1\right)e^{x}gx=-x^{2}
Use the distributive property to multiply a-1 by x.
\left(x^{2}e^{x}+axe^{x}-xe^{x}+e^{x}\right)gx=-x^{2}
Use the distributive property to multiply x^{2}+ax-x+1 by e^{x}.
\left(x^{2}e^{x}g+axe^{x}g-xe^{x}g+e^{x}g\right)x=-x^{2}
Use the distributive property to multiply x^{2}e^{x}+axe^{x}-xe^{x}+e^{x} by g.
e^{x}gx^{3}+ae^{x}gx^{2}-e^{x}gx^{2}+e^{x}gx=-x^{2}
Use the distributive property to multiply x^{2}e^{x}g+axe^{x}g-xe^{x}g+e^{x}g by x.
\left(e^{x}x^{3}+ae^{x}x^{2}-e^{x}x^{2}+e^{x}x\right)g=-x^{2}
Combine all terms containing g.
\left(x^{3}e^{x}+ax^{2}e^{x}-x^{2}e^{x}+xe^{x}\right)g=-x^{2}
The equation is in standard form.
\frac{\left(x^{3}e^{x}+ax^{2}e^{x}-x^{2}e^{x}+xe^{x}\right)g}{x^{3}e^{x}+ax^{2}e^{x}-x^{2}e^{x}+xe^{x}}=-\frac{x^{2}}{x^{3}e^{x}+ax^{2}e^{x}-x^{2}e^{x}+xe^{x}}
Divide both sides by e^{x}x^{3}+ae^{x}x^{2}-e^{x}x^{2}+e^{x}x.
g=-\frac{x^{2}}{x^{3}e^{x}+ax^{2}e^{x}-x^{2}e^{x}+xe^{x}}
Dividing by e^{x}x^{3}+ae^{x}x^{2}-e^{x}x^{2}+e^{x}x undoes the multiplication by e^{x}x^{3}+ae^{x}x^{2}-e^{x}x^{2}+e^{x}x.
g=-\frac{x}{\left(x^{2}+ax-x+1\right)e^{x}}
Divide -x^{2} by e^{x}x^{3}+ae^{x}x^{2}-e^{x}x^{2}+e^{x}x.