Solve for f
f=2+\frac{1}{x}
x\neq 0
Solve for x
x=\frac{1}{f-2}
f\neq 2
Graph
Share
Copied to clipboard
4fx=8x+4
Combine fx and f\times 3x to get 4fx.
4xf=8x+4
The equation is in standard form.
\frac{4xf}{4x}=\frac{8x+4}{4x}
Divide both sides by 4x.
f=\frac{8x+4}{4x}
Dividing by 4x undoes the multiplication by 4x.
f=2+\frac{1}{x}
Divide 8x+4 by 4x.
4fx=8x+4
Combine fx and f\times 3x to get 4fx.
4fx-8x=4
Subtract 8x from both sides.
\left(4f-8\right)x=4
Combine all terms containing x.
\frac{\left(4f-8\right)x}{4f-8}=\frac{4}{4f-8}
Divide both sides by 4f-8.
x=\frac{4}{4f-8}
Dividing by 4f-8 undoes the multiplication by 4f-8.
x=\frac{1}{f-2}
Divide 4 by 4f-8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}