Solve for f
f=\frac{5x}{3\left(4-x\right)}
x\neq 4
Solve for x
x=\frac{12f}{3f+5}
f\neq -\frac{5}{3}
Graph
Share
Copied to clipboard
fx+12f-4fx=5x
Use the distributive property to multiply 4f by 3-x.
-3fx+12f=5x
Combine fx and -4fx to get -3fx.
\left(-3x+12\right)f=5x
Combine all terms containing f.
\left(12-3x\right)f=5x
The equation is in standard form.
\frac{\left(12-3x\right)f}{12-3x}=\frac{5x}{12-3x}
Divide both sides by -3x+12.
f=\frac{5x}{12-3x}
Dividing by -3x+12 undoes the multiplication by -3x+12.
f=\frac{5x}{3\left(4-x\right)}
Divide 5x by -3x+12.
fx+12f-4xf=5x
Use the distributive property to multiply 4f by 3-x.
-3fx+12f=5x
Combine fx and -4xf to get -3fx.
-3fx+12f-5x=0
Subtract 5x from both sides.
-3fx-5x=-12f
Subtract 12f from both sides. Anything subtracted from zero gives its negation.
\left(-3f-5\right)x=-12f
Combine all terms containing x.
\frac{\left(-3f-5\right)x}{-3f-5}=-\frac{12f}{-3f-5}
Divide both sides by -3f-5.
x=-\frac{12f}{-3f-5}
Dividing by -3f-5 undoes the multiplication by -3f-5.
x=\frac{12f}{3f+5}
Divide -12f by -3f-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}