Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{1}{x\left(x+h\right)}\text{, }&x\neq -h\text{ and }x\neq 0\\f\in \mathrm{C}\text{, }&h=0\text{ and }x\neq 0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{1}{x\left(x+h\right)}\text{, }&x\neq -h\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&h=0\text{ and }x\neq 0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=0\text{, }&x\neq 0\\h=\frac{-fx^{2}-1}{fx}\text{, }&x\neq 0\text{ and }f\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
f\left(x+h\right)x\left(x+h\right)-fxx\left(x+h\right)=-h
Multiply both sides of the equation by x\left(x+h\right).
f\left(x+h\right)^{2}x-fxx\left(x+h\right)=-h
Multiply x+h and x+h to get \left(x+h\right)^{2}.
f\left(x+h\right)^{2}x-fx^{2}\left(x+h\right)=-h
Multiply x and x to get x^{2}.
f\left(x+h\right)^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply -fx^{2} by x+h.
f\left(x^{2}+2xh+h^{2}\right)x-fx^{3}-fx^{2}h=-h
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\left(fx^{2}+2fxh+fh^{2}\right)x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply f by x^{2}+2xh+h^{2}.
fx^{3}+2fhx^{2}+fh^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply fx^{2}+2fxh+fh^{2} by x.
2fhx^{2}+fh^{2}x-fx^{2}h=-h
Combine fx^{3} and -fx^{3} to get 0.
fhx^{2}+fh^{2}x=-h
Combine 2fhx^{2} and -fx^{2}h to get fhx^{2}.
\left(hx^{2}+h^{2}x\right)f=-h
Combine all terms containing f.
\left(hx^{2}+xh^{2}\right)f=-h
The equation is in standard form.
\frac{\left(hx^{2}+xh^{2}\right)f}{hx^{2}+xh^{2}}=-\frac{h}{hx^{2}+xh^{2}}
Divide both sides by hx^{2}+h^{2}x.
f=-\frac{h}{hx^{2}+xh^{2}}
Dividing by hx^{2}+h^{2}x undoes the multiplication by hx^{2}+h^{2}x.
f=-\frac{1}{x\left(x+h\right)}
Divide -h by hx^{2}+h^{2}x.
f\left(x+h\right)x\left(x+h\right)-fxx\left(x+h\right)=-h
Multiply both sides of the equation by x\left(x+h\right).
f\left(x+h\right)^{2}x-fxx\left(x+h\right)=-h
Multiply x+h and x+h to get \left(x+h\right)^{2}.
f\left(x+h\right)^{2}x-fx^{2}\left(x+h\right)=-h
Multiply x and x to get x^{2}.
f\left(x+h\right)^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply -fx^{2} by x+h.
f\left(x^{2}+2xh+h^{2}\right)x-fx^{3}-fx^{2}h=-h
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\left(fx^{2}+2fxh+fh^{2}\right)x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply f by x^{2}+2xh+h^{2}.
fx^{3}+2fhx^{2}+fh^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply fx^{2}+2fxh+fh^{2} by x.
2fhx^{2}+fh^{2}x-fx^{2}h=-h
Combine fx^{3} and -fx^{3} to get 0.
fhx^{2}+fh^{2}x=-h
Combine 2fhx^{2} and -fx^{2}h to get fhx^{2}.
\left(hx^{2}+h^{2}x\right)f=-h
Combine all terms containing f.
\left(hx^{2}+xh^{2}\right)f=-h
The equation is in standard form.
\frac{\left(hx^{2}+xh^{2}\right)f}{hx^{2}+xh^{2}}=-\frac{h}{hx^{2}+xh^{2}}
Divide both sides by hx^{2}+h^{2}x.
f=-\frac{h}{hx^{2}+xh^{2}}
Dividing by hx^{2}+h^{2}x undoes the multiplication by hx^{2}+h^{2}x.
f=-\frac{1}{x\left(x+h\right)}
Divide -h by hx^{2}+h^{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}