Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for h
Tick mark Image
Graph

Similar Problems from Web Search

Share

f\left(x+h\right)x\left(x+h\right)-fxx\left(x+h\right)=-h
Multiply both sides of the equation by x\left(x+h\right).
f\left(x+h\right)^{2}x-fxx\left(x+h\right)=-h
Multiply x+h and x+h to get \left(x+h\right)^{2}.
f\left(x+h\right)^{2}x-fx^{2}\left(x+h\right)=-h
Multiply x and x to get x^{2}.
f\left(x+h\right)^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply -fx^{2} by x+h.
f\left(x^{2}+2xh+h^{2}\right)x-fx^{3}-fx^{2}h=-h
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\left(fx^{2}+2fxh+fh^{2}\right)x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply f by x^{2}+2xh+h^{2}.
fx^{3}+2fhx^{2}+fh^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply fx^{2}+2fxh+fh^{2} by x.
2fhx^{2}+fh^{2}x-fx^{2}h=-h
Combine fx^{3} and -fx^{3} to get 0.
fhx^{2}+fh^{2}x=-h
Combine 2fhx^{2} and -fx^{2}h to get fhx^{2}.
\left(hx^{2}+h^{2}x\right)f=-h
Combine all terms containing f.
\left(hx^{2}+xh^{2}\right)f=-h
The equation is in standard form.
\frac{\left(hx^{2}+xh^{2}\right)f}{hx^{2}+xh^{2}}=-\frac{h}{hx^{2}+xh^{2}}
Divide both sides by hx^{2}+h^{2}x.
f=-\frac{h}{hx^{2}+xh^{2}}
Dividing by hx^{2}+h^{2}x undoes the multiplication by hx^{2}+h^{2}x.
f=-\frac{1}{x\left(x+h\right)}
Divide -h by hx^{2}+h^{2}x.
f\left(x+h\right)x\left(x+h\right)-fxx\left(x+h\right)=-h
Multiply both sides of the equation by x\left(x+h\right).
f\left(x+h\right)^{2}x-fxx\left(x+h\right)=-h
Multiply x+h and x+h to get \left(x+h\right)^{2}.
f\left(x+h\right)^{2}x-fx^{2}\left(x+h\right)=-h
Multiply x and x to get x^{2}.
f\left(x+h\right)^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply -fx^{2} by x+h.
f\left(x^{2}+2xh+h^{2}\right)x-fx^{3}-fx^{2}h=-h
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\left(fx^{2}+2fxh+fh^{2}\right)x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply f by x^{2}+2xh+h^{2}.
fx^{3}+2fhx^{2}+fh^{2}x-fx^{3}-fx^{2}h=-h
Use the distributive property to multiply fx^{2}+2fxh+fh^{2} by x.
2fhx^{2}+fh^{2}x-fx^{2}h=-h
Combine fx^{3} and -fx^{3} to get 0.
fhx^{2}+fh^{2}x=-h
Combine 2fhx^{2} and -fx^{2}h to get fhx^{2}.
\left(hx^{2}+h^{2}x\right)f=-h
Combine all terms containing f.
\left(hx^{2}+xh^{2}\right)f=-h
The equation is in standard form.
\frac{\left(hx^{2}+xh^{2}\right)f}{hx^{2}+xh^{2}}=-\frac{h}{hx^{2}+xh^{2}}
Divide both sides by hx^{2}+h^{2}x.
f=-\frac{h}{hx^{2}+xh^{2}}
Dividing by hx^{2}+h^{2}x undoes the multiplication by hx^{2}+h^{2}x.
f=-\frac{1}{x\left(x+h\right)}
Divide -h by hx^{2}+h^{2}x.