f ( t ) = ( 25 - t ) \cdot e ^ { 0,1 \cdot t } m
Solve for f
\left\{\begin{matrix}f=\frac{m\left(25-t\right)e^{\frac{t}{10}}}{t}\text{, }&t\neq 0\\f\in \mathrm{R}\text{, }&m=0\text{ and }t=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{fte^{-\frac{t}{10}}}{25-t}\text{, }&t\neq 25\\m\in \mathrm{R}\text{, }&f=0\text{ and }t=25\end{matrix}\right.
Share
Copied to clipboard
ft=\left(25e^{0,1t}-te^{0,1t}\right)m
Use the distributive property to multiply 25-t by e^{0,1t}.
ft=25e^{0,1t}m-te^{0,1t}m
Use the distributive property to multiply 25e^{0,1t}-te^{0,1t} by m.
tf=25me^{\frac{t}{10}}-mte^{\frac{t}{10}}
The equation is in standard form.
\frac{tf}{t}=\frac{m\left(25-t\right)e^{\frac{t}{10}}}{t}
Divide both sides by t.
f=\frac{m\left(25-t\right)e^{\frac{t}{10}}}{t}
Dividing by t undoes the multiplication by t.
ft=\left(25e^{0,1t}-te^{0,1t}\right)m
Use the distributive property to multiply 25-t by e^{0,1t}.
ft=25e^{0,1t}m-te^{0,1t}m
Use the distributive property to multiply 25e^{0,1t}-te^{0,1t} by m.
25e^{0,1t}m-te^{0,1t}m=ft
Swap sides so that all variable terms are on the left hand side.
\left(25e^{0,1t}-te^{0,1t}\right)m=ft
Combine all terms containing m.
\left(25e^{\frac{t}{10}}-te^{\frac{t}{10}}\right)m=ft
The equation is in standard form.
\frac{\left(25e^{\frac{t}{10}}-te^{\frac{t}{10}}\right)m}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}=\frac{ft}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}
Divide both sides by 25e^{0,1t}-te^{0,1t}.
m=\frac{ft}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}
Dividing by 25e^{0,1t}-te^{0,1t} undoes the multiplication by 25e^{0,1t}-te^{0,1t}.
m=\frac{fte^{-\frac{t}{10}}}{25-t}
Divide ft by 25e^{0,1t}-te^{0,1t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}