Skip to main content
Solve for f
Tick mark Image
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

ft=\left(25e^{0,1t}-te^{0,1t}\right)m
Use the distributive property to multiply 25-t by e^{0,1t}.
ft=25e^{0,1t}m-te^{0,1t}m
Use the distributive property to multiply 25e^{0,1t}-te^{0,1t} by m.
tf=25me^{\frac{t}{10}}-mte^{\frac{t}{10}}
The equation is in standard form.
\frac{tf}{t}=\frac{m\left(25-t\right)e^{\frac{t}{10}}}{t}
Divide both sides by t.
f=\frac{m\left(25-t\right)e^{\frac{t}{10}}}{t}
Dividing by t undoes the multiplication by t.
ft=\left(25e^{0,1t}-te^{0,1t}\right)m
Use the distributive property to multiply 25-t by e^{0,1t}.
ft=25e^{0,1t}m-te^{0,1t}m
Use the distributive property to multiply 25e^{0,1t}-te^{0,1t} by m.
25e^{0,1t}m-te^{0,1t}m=ft
Swap sides so that all variable terms are on the left hand side.
\left(25e^{0,1t}-te^{0,1t}\right)m=ft
Combine all terms containing m.
\left(25e^{\frac{t}{10}}-te^{\frac{t}{10}}\right)m=ft
The equation is in standard form.
\frac{\left(25e^{\frac{t}{10}}-te^{\frac{t}{10}}\right)m}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}=\frac{ft}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}
Divide both sides by 25e^{0,1t}-te^{0,1t}.
m=\frac{ft}{25e^{\frac{t}{10}}-te^{\frac{t}{10}}}
Dividing by 25e^{0,1t}-te^{0,1t} undoes the multiplication by 25e^{0,1t}-te^{0,1t}.
m=\frac{fte^{-\frac{t}{10}}}{25-t}
Divide ft by 25e^{0,1t}-te^{0,1t}.