Solve for f
f=\frac{242}{1-2x}
x\neq \frac{1}{2}
Solve for x
x=\frac{1}{2}-\frac{121}{f}
f\neq 0
Graph
Share
Copied to clipboard
3f-fx-f\left(x+2\right)=242
Use the distributive property to multiply f by 3-x.
3f-fx-\left(fx+2f\right)=242
Use the distributive property to multiply f by x+2.
3f-fx-fx-2f=242
To find the opposite of fx+2f, find the opposite of each term.
3f-2fx-2f=242
Combine -fx and -fx to get -2fx.
f-2fx=242
Combine 3f and -2f to get f.
\left(1-2x\right)f=242
Combine all terms containing f.
\frac{\left(1-2x\right)f}{1-2x}=\frac{242}{1-2x}
Divide both sides by 1-2x.
f=\frac{242}{1-2x}
Dividing by 1-2x undoes the multiplication by 1-2x.
3f-fx-f\left(x+2\right)=242
Use the distributive property to multiply f by 3-x.
3f-fx-\left(fx+2f\right)=242
Use the distributive property to multiply f by x+2.
3f-fx-fx-2f=242
To find the opposite of fx+2f, find the opposite of each term.
3f-2fx-2f=242
Combine -fx and -fx to get -2fx.
f-2fx=242
Combine 3f and -2f to get f.
-2fx=242-f
Subtract f from both sides.
\left(-2f\right)x=242-f
The equation is in standard form.
\frac{\left(-2f\right)x}{-2f}=\frac{242-f}{-2f}
Divide both sides by -2f.
x=\frac{242-f}{-2f}
Dividing by -2f undoes the multiplication by -2f.
x=\frac{1}{2}-\frac{121}{f}
Divide 242-f by -2f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}