Solve for a
a=-\frac{3f+1}{2\left(f-2\right)}
f\neq 2
Solve for f
f=-\frac{1-4a}{2a+3}
a\neq -\frac{3}{2}
Share
Copied to clipboard
2fa+3f-\left(4a-8\right)=7
Use the distributive property to multiply f by 2a+3.
2fa+3f-4a+8=7
To find the opposite of 4a-8, find the opposite of each term.
2fa-4a+8=7-3f
Subtract 3f from both sides.
2fa-4a=7-3f-8
Subtract 8 from both sides.
2fa-4a=-1-3f
Subtract 8 from 7 to get -1.
\left(2f-4\right)a=-1-3f
Combine all terms containing a.
\left(2f-4\right)a=-3f-1
The equation is in standard form.
\frac{\left(2f-4\right)a}{2f-4}=\frac{-3f-1}{2f-4}
Divide both sides by 2f-4.
a=\frac{-3f-1}{2f-4}
Dividing by 2f-4 undoes the multiplication by 2f-4.
a=-\frac{3f+1}{2\left(f-2\right)}
Divide -1-3f by 2f-4.
2fa+3f-\left(4a-8\right)=7
Use the distributive property to multiply f by 2a+3.
2fa+3f-4a+8=7
To find the opposite of 4a-8, find the opposite of each term.
2fa+3f+8=7+4a
Add 4a to both sides.
2fa+3f=7+4a-8
Subtract 8 from both sides.
2fa+3f=-1+4a
Subtract 8 from 7 to get -1.
\left(2a+3\right)f=-1+4a
Combine all terms containing f.
\left(2a+3\right)f=4a-1
The equation is in standard form.
\frac{\left(2a+3\right)f}{2a+3}=\frac{4a-1}{2a+3}
Divide both sides by 2a+3.
f=\frac{4a-1}{2a+3}
Dividing by 2a+3 undoes the multiplication by 2a+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}