Evaluate
\frac{43}{9}\approx 4.777777778
Factor
\frac{43}{3 ^ {2}} = 4\frac{7}{9} = 4.777777777777778
Quiz
Arithmetic
f ( 2 ) = - \frac { 1 } { 9 } \cdot 2 ^ { 3 } + \frac { 2 } { 3 } \cdot 2 ^ { 2 } + 3
Share
Copied to clipboard
-\frac{1}{9}\times 8+\frac{2}{3}\times 2^{2}+3
Calculate 2 to the power of 3 and get 8.
\frac{-8}{9}+\frac{2}{3}\times 2^{2}+3
Express -\frac{1}{9}\times 8 as a single fraction.
-\frac{8}{9}+\frac{2}{3}\times 2^{2}+3
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
-\frac{8}{9}+\frac{2}{3}\times 4+3
Calculate 2 to the power of 2 and get 4.
-\frac{8}{9}+\frac{2\times 4}{3}+3
Express \frac{2}{3}\times 4 as a single fraction.
-\frac{8}{9}+\frac{8}{3}+3
Multiply 2 and 4 to get 8.
-\frac{8}{9}+\frac{24}{9}+3
Least common multiple of 9 and 3 is 9. Convert -\frac{8}{9} and \frac{8}{3} to fractions with denominator 9.
\frac{-8+24}{9}+3
Since -\frac{8}{9} and \frac{24}{9} have the same denominator, add them by adding their numerators.
\frac{16}{9}+3
Add -8 and 24 to get 16.
\frac{16}{9}+\frac{27}{9}
Convert 3 to fraction \frac{27}{9}.
\frac{16+27}{9}
Since \frac{16}{9} and \frac{27}{9} have the same denominator, add them by adding their numerators.
\frac{43}{9}
Add 16 and 27 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}