Solve for f
f=1
Share
Copied to clipboard
f\times \left(\frac{1}{2}\right)^{2}+\left(\cos(\frac{\pi }{3})\right)^{2}-\left(\tan(\frac{\pi }{4})\right)^{2}=-\frac{1}{2}
Get the value of \sin(\frac{\pi }{6}) from trigonometric values table.
f\times \frac{1}{4}+\left(\cos(\frac{\pi }{3})\right)^{2}-\left(\tan(\frac{\pi }{4})\right)^{2}=-\frac{1}{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
f\times \frac{1}{4}+\left(\frac{1}{2}\right)^{2}-\left(\tan(\frac{\pi }{4})\right)^{2}=-\frac{1}{2}
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
f\times \frac{1}{4}+\frac{1}{4}-\left(\tan(\frac{\pi }{4})\right)^{2}=-\frac{1}{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
f\times \frac{1}{4}+\frac{1}{4}-1^{2}=-\frac{1}{2}
Get the value of \tan(\frac{\pi }{4}) from trigonometric values table.
f\times \frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2}
Calculate 1 to the power of 2 and get 1.
f\times \frac{1}{4}-\frac{3}{4}=-\frac{1}{2}
Subtract 1 from \frac{1}{4} to get -\frac{3}{4}.
f\times \frac{1}{4}=-\frac{1}{2}+\frac{3}{4}
Add \frac{3}{4} to both sides.
f\times \frac{1}{4}=\frac{1}{4}
Add -\frac{1}{2} and \frac{3}{4} to get \frac{1}{4}.
f=\frac{1}{4}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
f=1
Multiply \frac{1}{4} and 4 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}