Skip to main content
Solve for d
Tick mark Image
Solve for f
Tick mark Image

Similar Problems from Web Search

Share

f\times 1dt=\left(x+1\right)\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Multiply both sides of the equation by x+1.
f\times 1dt=x\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Use the distributive property to multiply x+1 by \int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t.
dft=x\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t
Reorder the terms.
ftd=\frac{x\left(4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi \right)+4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi }{4}
The equation is in standard form.
\frac{ftd}{ft}=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{ft}
Divide both sides by ft.
d=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{ft}
Dividing by ft undoes the multiplication by ft.
d=\left(\left\{\begin{matrix}\frac{4x\arctan(\frac{1}{x})+4\arctan(\frac{1}{x})-\pi x-\pi }{4ft},&\\\text{Indeterminate},&\end{matrix}\right.\right)
Divide \left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&x=0\end{matrix}\right. by ft.
f\times 1dt=\left(x+1\right)\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Multiply both sides of the equation by x+1.
f\times 1dt=x\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Use the distributive property to multiply x+1 by \int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t.
dft=x\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t
Reorder the terms.
dtf=\frac{x\left(4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi \right)+4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi }{4}
The equation is in standard form.
\frac{dtf}{dt}=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{dt}
Divide both sides by dt.
f=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{dt}
Dividing by dt undoes the multiplication by dt.
f=\left(\left\{\begin{matrix}\frac{4x\arctan(\frac{1}{x})+4\arctan(\frac{1}{x})-\pi x-\pi }{4dt},&\\\text{Indeterminate},&\end{matrix}\right.\right)
Divide \left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&x=0\end{matrix}\right. by dt.