f \frac { 1 } { x + 1 } d t = \int _ { 1 } ^ { \frac { 1 } { x } } \frac { 1 } { 1 + t ^ { 2 } } d t
Solve for d
\left\{\begin{matrix}d=-\frac{\left(x+1\right)\left(-4\arctan(\frac{1}{x})+\pi \right)}{4ft}\text{, }&f\neq 0\text{ and }x\neq 0\text{ and }t\neq 0\text{ and }x\neq -1\\d\in \mathrm{R}\text{, }&\left(t=0\text{ or }f=0\right)\text{ and }x=1\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{\left(x+1\right)\left(-4\arctan(\frac{1}{x})+\pi \right)}{4dt}\text{, }&x\neq -1\text{ and }t\neq 0\text{ and }d\neq 0\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&\left(d=0\text{ or }t=0\right)\text{ and }x=1\end{matrix}\right.
Share
Copied to clipboard
f\times 1dt=\left(x+1\right)\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Multiply both sides of the equation by x+1.
f\times 1dt=x\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Use the distributive property to multiply x+1 by \int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t.
dft=x\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t
Reorder the terms.
ftd=\frac{x\left(4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi \right)+4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi }{4}
The equation is in standard form.
\frac{ftd}{ft}=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{ft}
Divide both sides by ft.
d=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{ft}
Dividing by ft undoes the multiplication by ft.
d=\left(\left\{\begin{matrix}\frac{4x\arctan(\frac{1}{x})+4\arctan(\frac{1}{x})-\pi x-\pi }{4ft},&\\\text{Indeterminate},&\end{matrix}\right.\right)
Divide \left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&x=0\end{matrix}\right. by ft.
f\times 1dt=\left(x+1\right)\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Multiply both sides of the equation by x+1.
f\times 1dt=x\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t
Use the distributive property to multiply x+1 by \int _{1}^{\frac{1}{x}}\frac{1}{1+t^{2}}\mathrm{d}t.
dft=x\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t+\int _{1}^{\frac{1}{x}}\frac{1}{t^{2}+1}\mathrm{d}t
Reorder the terms.
dtf=\frac{x\left(4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi \right)+4\left(\lim_{t\to \frac{1}{x}}\arctan(t)\right)-\pi }{4}
The equation is in standard form.
\frac{dtf}{dt}=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{dt}
Divide both sides by dt.
f=\frac{\left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&\end{matrix}\right.}{dt}
Dividing by dt undoes the multiplication by dt.
f=\left(\left\{\begin{matrix}\frac{4x\arctan(\frac{1}{x})+4\arctan(\frac{1}{x})-\pi x-\pi }{4dt},&\\\text{Indeterminate},&\end{matrix}\right.\right)
Divide \left\{\begin{matrix}\frac{x\left(4\arctan(\frac{1}{x})-\pi \right)+4\arctan(\frac{1}{x})-\pi }{4},&\\\text{Indeterminate},&x=0\end{matrix}\right. by dt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}