Solve for f
\left\{\begin{matrix}f=-\frac{1}{x-3}\text{, }&x\neq 3\\f\neq 0\text{, }&x=0\end{matrix}\right.
Solve for x
x=3-\frac{1}{f}
x=0\text{, }f\neq 0
Graph
Share
Copied to clipboard
\frac{1}{f}x=-x^{2}+3x
Reorder the terms.
1x=-x^{2}f+3xf
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
-x^{2}f+3xf=1x
Swap sides so that all variable terms are on the left hand side.
-fx^{2}+3fx=x
Reorder the terms.
\left(-x^{2}+3x\right)f=x
Combine all terms containing f.
\left(3x-x^{2}\right)f=x
The equation is in standard form.
\frac{\left(3x-x^{2}\right)f}{3x-x^{2}}=\frac{x}{3x-x^{2}}
Divide both sides by 3x-x^{2}.
f=\frac{x}{3x-x^{2}}
Dividing by 3x-x^{2} undoes the multiplication by 3x-x^{2}.
f=\frac{1}{3-x}
Divide x by 3x-x^{2}.
f=\frac{1}{3-x}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}