Solve for f
f=-\frac{3x}{5-x}
x\neq 0\text{ and }x\neq 5
Solve for x
x=-\frac{5f}{3-f}
f\neq 3\text{ and }f\neq 0
Graph
Share
Copied to clipboard
3f^{-1}x=x-5
Multiply both sides of the equation by 3.
3\times \frac{1}{f}x=x-5
Reorder the terms.
3\times 1x=fx+f\left(-5\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
3x=fx+f\left(-5\right)
Multiply 3 and 1 to get 3.
fx+f\left(-5\right)=3x
Swap sides so that all variable terms are on the left hand side.
\left(x-5\right)f=3x
Combine all terms containing f.
\frac{\left(x-5\right)f}{x-5}=\frac{3x}{x-5}
Divide both sides by x-5.
f=\frac{3x}{x-5}
Dividing by x-5 undoes the multiplication by x-5.
f=\frac{3x}{x-5}\text{, }f\neq 0
Variable f cannot be equal to 0.
3f^{-1}x=x-5
Multiply both sides of the equation by 3.
3f^{-1}x-x=-5
Subtract x from both sides.
-x+3\times \frac{1}{f}x=-5
Reorder the terms.
-xf+3\times 1x=-5f
Multiply both sides of the equation by f.
-xf+3x=-5f
Multiply 3 and 1 to get 3.
\left(-f+3\right)x=-5f
Combine all terms containing x.
\left(3-f\right)x=-5f
The equation is in standard form.
\frac{\left(3-f\right)x}{3-f}=-\frac{5f}{3-f}
Divide both sides by 3-f.
x=-\frac{5f}{3-f}
Dividing by 3-f undoes the multiplication by 3-f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}