Solve for f
f=\frac{xy}{2x+1}
y\neq 0\text{ and }x\neq 0\text{ and }x\neq -\frac{1}{2}
Solve for x
x=\frac{f}{y-2f}
f\neq \frac{y}{2}\text{ and }f\neq 0\text{ and }y\neq 0
Graph
Share
Copied to clipboard
f^{-1}xy=2x+1
Multiply both sides of the equation by y.
\frac{1}{f}xy=2x+1
Reorder the terms.
1xy=2xf+f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
2xf+f=1xy
Swap sides so that all variable terms are on the left hand side.
2fx+f=xy
Reorder the terms.
\left(2x+1\right)f=xy
Combine all terms containing f.
\frac{\left(2x+1\right)f}{2x+1}=\frac{xy}{2x+1}
Divide both sides by 2x+1.
f=\frac{xy}{2x+1}
Dividing by 2x+1 undoes the multiplication by 2x+1.
f=\frac{xy}{2x+1}\text{, }f\neq 0
Variable f cannot be equal to 0.
f^{-1}xy=2x+1
Multiply both sides of the equation by y.
f^{-1}xy-2x=1
Subtract 2x from both sides.
-2x+\frac{1}{f}xy=1
Reorder the terms.
-2xf+1xy=f
Multiply both sides of the equation by f.
xy-2fx=f
Reorder the terms.
\left(y-2f\right)x=f
Combine all terms containing x.
\frac{\left(y-2f\right)x}{y-2f}=\frac{f}{y-2f}
Divide both sides by y-2f.
x=\frac{f}{y-2f}
Dividing by y-2f undoes the multiplication by y-2f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}