Solve for f
f=\frac{5}{3x+2}
x\neq -\frac{2}{3}
Solve for x
x=-\frac{2}{3}+\frac{5}{3f}
f\neq 0
Graph
Share
Copied to clipboard
5f^{-1}=3x+2
Multiply both sides of the equation by 5.
5\times \frac{1}{f}=3x+2
Reorder the terms.
5\times 1=3xf+f\times 2
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
5=3xf+f\times 2
Multiply 5 and 1 to get 5.
3xf+f\times 2=5
Swap sides so that all variable terms are on the left hand side.
\left(3x+2\right)f=5
Combine all terms containing f.
\frac{\left(3x+2\right)f}{3x+2}=\frac{5}{3x+2}
Divide both sides by 3x+2.
f=\frac{5}{3x+2}
Dividing by 3x+2 undoes the multiplication by 3x+2.
f=\frac{5}{3x+2}\text{, }f\neq 0
Variable f cannot be equal to 0.
5f^{-1}=3x+2
Multiply both sides of the equation by 5.
3x+2=5f^{-1}
Swap sides so that all variable terms are on the left hand side.
3x=5f^{-1}-2
Subtract 2 from both sides.
3x=-2+5\times \frac{1}{f}
Reorder the terms.
3xf=f\left(-2\right)+5\times 1
Multiply both sides of the equation by f.
3xf=f\left(-2\right)+5
Multiply 5 and 1 to get 5.
3fx=5-2f
The equation is in standard form.
\frac{3fx}{3f}=\frac{5-2f}{3f}
Divide both sides by 3f.
x=\frac{5-2f}{3f}
Dividing by 3f undoes the multiplication by 3f.
x=-\frac{2}{3}+\frac{5}{3f}
Divide -2f+5 by 3f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}