Skip to main content
Solve for a
Tick mark Image
Solve for f
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(f)xx^{3}=\left(ax-e^{x}\right)\left(x-2\right)
Multiply both sides of the equation by x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}=\left(ax-e^{x}\right)\left(x-2\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}=\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)
Use the distributive property to multiply ax-e^{x} by x-2.
\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}
Swap sides so that all variable terms are on the left hand side.
ax^{2}-e^{x}x-2\left(ax-e^{x}\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}
Use the distributive property to multiply ax-e^{x} by x.
ax^{2}-e^{x}x-2ax+2e^{x}=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}
Use the distributive property to multiply -2 by ax-e^{x}.
ax^{2}-2ax+2e^{x}=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}+e^{x}x
Add e^{x}x to both sides.
ax^{2}-2ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}+e^{x}x-2e^{x}
Subtract 2e^{x} from both sides.
\left(x^{2}-2x\right)a=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{4}+e^{x}x-2e^{x}
Combine all terms containing a.
\left(x^{2}-2x\right)a=xe^{x}-2e^{x}
The equation is in standard form.
\frac{\left(x^{2}-2x\right)a}{x^{2}-2x}=\frac{\left(x-2\right)e^{x}}{x^{2}-2x}
Divide both sides by x^{2}-2x.
a=\frac{\left(x-2\right)e^{x}}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
a=\frac{e^{x}}{x}
Divide \left(-2+x\right)e^{x} by x^{2}-2x.