Solve for m (complex solution)
\left\{\begin{matrix}m=\left(n^{2}+4\right)^{-\frac{1}{2}}f\text{, }&n\neq -2i\text{ and }n\neq 2i\\m\in \mathrm{C}\text{, }&\left(n=2i\text{ or }n=-2i\right)\text{ and }f=0\end{matrix}\right.
Solve for m
m=\frac{f}{\sqrt{n^{2}+4}}
Solve for f
f=m\sqrt{n^{2}+4}
Share
Copied to clipboard
m\sqrt{n^{2}+4}=f
Swap sides so that all variable terms are on the left hand side.
\sqrt{n^{2}+4}m=f
The equation is in standard form.
\frac{\sqrt{n^{2}+4}m}{\sqrt{n^{2}+4}}=\frac{f}{\sqrt{n^{2}+4}}
Divide both sides by \sqrt{n^{2}+4}.
m=\frac{f}{\sqrt{n^{2}+4}}
Dividing by \sqrt{n^{2}+4} undoes the multiplication by \sqrt{n^{2}+4}.
m=\left(n^{2}+4\right)^{-\frac{1}{2}}f
Divide f by \sqrt{n^{2}+4}.
m\sqrt{n^{2}+4}=f
Swap sides so that all variable terms are on the left hand side.
\sqrt{n^{2}+4}m=f
The equation is in standard form.
\frac{\sqrt{n^{2}+4}m}{\sqrt{n^{2}+4}}=\frac{f}{\sqrt{n^{2}+4}}
Divide both sides by \sqrt{n^{2}+4}.
m=\frac{f}{\sqrt{n^{2}+4}}
Dividing by \sqrt{n^{2}+4} undoes the multiplication by \sqrt{n^{2}+4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}