Solve for f
f=-\frac{5y}{2}
y\neq 0
Solve for y
y=-\frac{2f}{5}
f\neq 0
Graph
Share
Copied to clipboard
2f=2y\times \frac{1}{2}+2y\left(-3\right)
Multiply both sides of the equation by 2y, the least common multiple of y,2.
2f=y+2y\left(-3\right)
Multiply 2 and \frac{1}{2} to get 1.
2f=y-6y
Multiply 2 and -3 to get -6.
2f=-5y
Combine y and -6y to get -5y.
\frac{2f}{2}=-\frac{5y}{2}
Divide both sides by 2.
f=-\frac{5y}{2}
Dividing by 2 undoes the multiplication by 2.
2f=2y\times \frac{1}{2}+2y\left(-3\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2y, the least common multiple of y,2.
2f=y+2y\left(-3\right)
Multiply 2 and \frac{1}{2} to get 1.
2f=y-6y
Multiply 2 and -3 to get -6.
2f=-5y
Combine y and -6y to get -5y.
-5y=2f
Swap sides so that all variable terms are on the left hand side.
\frac{-5y}{-5}=\frac{2f}{-5}
Divide both sides by -5.
y=\frac{2f}{-5}
Dividing by -5 undoes the multiplication by -5.
y=-\frac{2f}{5}
Divide 2f by -5.
y=-\frac{2f}{5}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}