Solve for f
f=y\cos(x)
y\neq 0
Solve for x (complex solution)
x=\left(-i\right)\ln(\left(f+\left(\left(f+\left(-1\right)y\right)\left(f+y\right)\right)^{\frac{1}{2}}\right)y^{-1})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
x=\left(-i\right)\ln(\left(f+\left(-1\right)\left(\left(f+\left(-1\right)y\right)\left(f+y\right)\right)^{\frac{1}{2}}\right)y^{-1})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
Share
Copied to clipboard
\frac{1}{y}f=\cos(x)
The equation is in standard form.
\frac{\frac{1}{y}fy}{1}=\frac{\cos(x)y}{1}
Divide both sides by y^{-1}.
f=\frac{\cos(x)y}{1}
Dividing by y^{-1} undoes the multiplication by y^{-1}.
f=y\cos(x)
Divide \cos(x) by y^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}